Российские ученые улучшили метод глубокого обучения нейросетей

21.06.2018 9:35 14

Российские ученые улучшили метод глубокого обучения нейросетей

МОСКВА, 21 июня В Институте интеллектуальных кибернетических конструкций Национального исследовательского ядерного университета МИФИ предложили новый метод для обучения ограниченной машины Больцмана (вид нейросети), позволяющий оптимизировать процессы семантического кодирования, визуализации и распознавания данных. Результаты исследования опубликованы в журнале Optical Memoryand Neural Networks.

В настоящее время львиную популярность приобретает изучение глубоких нейронных сетей различной архитектуры: сверточных, рекуррентных, автоэнкодерных. Ряд высокотехнологичных компаний, среди которых – Microsoft и Google, используют определенные нейронные сети для проектирования различных интеллектуальных систем. Вместе с глубокими нейронными сетями снискал популярность термин глубокое обучение.

Профессор Института кибернетических систем НИЯУ МИФИ Владимир Головко проанализировал проблематику и основные парадигмы глубокого машинного обучения, предложив новый метод для обучения ограниченной машины Больцмана. Ученый показал, что классическое нашколило обучения этой нейросети является личным случаем предложенного им метода.

Американские ученые Минский и Пейперт в свое время выявили, что монослойный персептрон с пороговой функцией активации формирует линейную разделяющую поверхность с точки зрения классификации образов и поэтому не может решить задачку исключающее или. Это вызывало пессимистические выводы насчет дальнейшего развития нейронных сетей. Однако остатнее утверждение справедливо только для однослойного персептрона с пороговой или монотонной непрерывной функцией активации – например, сигмоидной. При использовании сигнальной функции активации однослойный персептрон может решить задачку исключающее или, так как он разбивает входное пространство стилей на классы при помощи двух прямых, – пересказал Владимир Головко.

Практическую ценность данных научных разработок сложно переоценить: они уже отряди применение в таких областях, как компьютерное зрение, опознавание речи и биоинформатика.

Источник

Следующая новость
Предыдущая новость

Азартные игры в интернете от Вулкан Старс Выполнение изысканий по геологии, геодезии и экологии Качественные металлические профильные трубы по доступной цене Кредит на самых выгодных условиях Красиво, эффективно, надежно: фасадные панели для облицовки домов

Последние новости